Uses of Class
com.hw.langchain.schema.Document
Package
Description
-
Uses of Document in com.hw.langchain.chains.combine.documents.base
Modifier and TypeMethodDescriptionstatic String
BaseUtils.formatDocument
(Document doc, BasePromptTemplate prompt) Format a document into a string based on a prompt template. -
Uses of Document in com.hw.langchain.chains.combine.documents.stuff
Modifier and TypeMethodDescriptionStuff all documents into one prompt and pass to LLM. -
Uses of Document in com.hw.langchain.chains.retrieval.qa.base
-
Uses of Document in com.hw.langchain.document.loaders
-
Uses of Document in com.hw.langchain.document.loaders.base
-
Uses of Document in com.hw.langchain.document.loaders.directory
-
Uses of Document in com.hw.langchain.document.loaders.notion
-
Uses of Document in com.hw.langchain.document.loaders.text
-
Uses of Document in com.hw.langchain.retrievers.self.query.base
-
Uses of Document in com.hw.langchain.schema
Modifier and TypeMethodDescriptionBaseRetriever.getRelevantDocuments
(String query) Get documents relevant for a query.Transform a list of documents. -
Uses of Document in com.hw.langchain.text.splitter
Modifier and TypeMethodDescriptionMarkdownHeaderTextSplitter.aggregateLinesToChunks
(List<LineType> lines) Combine lines with common metadata into chunks.Create documents from a list of texts.TextSplitter.splitDocuments
(List<Document> documents) Split documents.Split markdown file.Transform sequence of documents by splitting them. -
Uses of Document in com.hw.langchain.vectorstores.base
Modifier and TypeMethodDescriptionVectorStoreRetriever.getRelevantDocuments
(String query) VectorStore.innerSimilaritySearchWithRelevanceScores
(String query, int k) Return docs and relevance scores, normalized on a scale from 0 to 1.VectorStore.maxMarginalRelevanceSearch
(String query) VectorStore.maxMarginalRelevanceSearch
(String query, int k, int fetchK, float lambdaMult) Return docs selected using the maximal marginal relevance.VectorStore.maxMarginalRelevanceSearchByVector
(List<Float> embedding) VectorStore.maxMarginalRelevanceSearchByVector
(List<Float> embedding, int k, int fetchK, float lambdaMult) Return docs selected using the maximal marginal relevance.VectorStore.similaritySearch
(String query) Returns the documents most similar to the given query.VectorStore.similaritySearch
(String query, int k, Map<String, Object> filter) Returns the documents most similar to the given query.VectorStore.similaritySearch
(String query, Map<String, Object> filter) Returns the documents most similar to the given query.VectorStore.similaritySearchWithRelevanceScores
(String query) Return docs and relevance scores in the range [0, 1].VectorStore.similaritySearchWithRelevanceScores
(String query, int k) Return docs and relevance scores in the range [0, 1].Return docs most similar to embedding vector.Modifier and TypeMethodDescriptionRun more documents through the embeddings and add to the vectorStore.Add documents to vectorStore.int
VectorStore.fromDocuments
(List<Document> documents, Embeddings embedding) Return VectorStore initialized from documents and embeddings. -
Uses of Document in com.hw.langchain.vectorstores.milvus
Modifier and TypeMethodDescriptionMilvus.innerSimilaritySearchWithRelevanceScores
(String query, int k) Milvus.maxMarginalRelevanceSearch
(String query, int k, int fetchK, float lambdaMult) Milvus.maxMarginalRelevanceSearchByVector
(List<Float> embedding, int k, int fetchK, float lambdaMult) Milvus.similaritySearch
(String query, int k, Map<String, Object> filter) -
Uses of Document in com.hw.langchain.vectorstores.pinecone
Modifier and TypeMethodDescriptionPinecone.innerSimilaritySearchWithRelevanceScores
(String query, int k) Pinecone.maxMarginalRelevanceSearch
(String query, int k, int fetchK, float lambdaMult) Pinecone.maxMarginalRelevanceSearchByVector
(List<Float> embedding, int k, int fetchK, float lambdaMult) Pinecone.similaritySearch
(String query, int k, Map<String, Object> filter) Return pinecone documents most similar to query.